

Economic Computation and Economic Cybernetics Studies and Research, Issue 1/2016, Vol. 50

85

Professor Ion LUNGU, PhD

E-mail: ion.lungu@ie.ase.ro

Professor Adela BÂRA, PhD

E-mail: bara.adela@ie.ase.ro

The Bucharest Academy of Economic Studies

Associate Professor George CĂRUTASU, PhD

E-mail: georgecarutasu@yahoo.com

The Romanian-American University

Lecturer Alexandru PÎRJAN, PhD

E-mail: alex@pirjan.com

The Romanian-American University

Assistant Lecturer Simona-Vasilica OPREA, PhD

E-mail: simona.oprea@csie.ase.ro

The Bucharest Academy of Economic Studies

PREDICTION INTELLIGENT SYSTEM IN THE FIELD OF RENEWABLE

ENERGIES THROUGH NEURAL NETWORKS

Abstract: In this paper, we have developed a series of neural networks in

order to design a decision support system for predicting, analysing and monitoring

the performance indicators in the field of renewable energies in Romania. We have

first analysed a series of comparative aspects regarding the algorithms used for

developing the neural networks: the Levenberg-Marquardt, the Bayesian

Regularization and the Scaled Conjugate Gradient algorithms. Then, we have

developed, trained, validated and tested several neural networks based on the

above-mentioned algorithms, using the Neural Network Toolbox from the

development environment MatlabR2015a. Thus, we have obtained a solution that

forecasts the total active energy export and the total active power, when knowing

the solar irradiation, the ambient temperature, the humidity, the wind direction and

the wind speed.

Keywords: Neural Networks, algorithms, renewable energy, solar power

plant, Decision Support System.

JEL Classification: C01, C53, C15, L86, O13, Q42, Q47

1. Introduction

Nowadays, in many European countries including Romania, it is necessary

to encourage the usage of renewable energy resources as they offer a wide range of

advantages [1]. Thus, the security of energy supply and the conservation of the

traditional resources are ensured while the imports of primary energy resources are

reduced significantly. Moreover, the usage of renewable energy stimulates the

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

86

economic development at local, regional and global levels and creates new

employment opportunities [2], [3]. A major advantage of using renewable energy is

related to reducing the environmental pollution [4], [5].

Currently, at the national level, in the power plants that produce renewable

energy, the renewable resource management is not sustained by a decision support

system (DSS) that could enable the efficient monitoring and analysis of the energy

produced from these sources. In many other European countries, there are decision

support systems for the efficient management of electricity generation (e.g.

Germany, Spain). Unfortunately, the developing costs of such systems are pretty

high and their implementation in Romania must take into account the national

specific.

The development of a DSS poses to the developers certain issues and risks.

These are related to the fact that data is coming from heterogeneous sources, or that

the predictions and notifications might be inaccurate as, unfortunately, at the

national and international level the existing methods or systems provide a

prediction error higher than 30% for Wind Power Plants (WPP) and 15% for Solar

Power Plants (SPP) [2], [3]. A DSS for the prediction, analysis and monitoring the

technological and business processes in the field of renewable energy in Romania

can be developed using different approaches. Due to their undeniable advantages,

in this paper we have chosen to develop a series of Neural Networks.

The Artificial Neural Networks (ANN) offer many advantages in the cases

of statistical, stochastic and deterministic approaches. One of the most important

advantages of the neural networks consists in the fact that the networks do not rely

on a priori mathematical model, as in the case of other approaches; the results

depend on the data and a model can be recognized without learning the definitions.

They are used in numerous applications, that include models for

approximation, optimization, systems modelling and pattern recognition systems.

The artificial neural networks are frequently used for engineering, economical

modelling [6] or medicine [7].

We have first used stochastic methods, then we analysed a series of

comparative aspects regarding the ANN algorithms: the Levenberg-Marquardt, the

Bayesian Regularization and the Scaled Conjugate Gradient algorithms. We have

developed, trained, validated and tested several neural networks based on the

above-mentioned algorithms, using the Neural Network Toolbox from the

development environment MatlabR2015a.

2. Prediction models for Solar Power Plant using stochastic methods

In order to develop the proposed solution, we have identified the input

parameters (the solar irradiation, the ambient temperature, the humidity, the wind

direction, the wind speed), along with the corresponding outputs (the total active

energy export, the total active power). We have gathered the experimental data

corresponding to the input and output parameters, resulting in a total number of

50,631 samples, through measurements conducted over a one-year period (from the

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

87

1st of January to the 31st of December 2014), from 10 to 10 minutes, in a solar

power plant located in the Giurgiu County, in Romania.

The solar power plant where we have conducted the measurements

comprises photovoltaic panels having two models of invertors: 600 kW and 760

kW PSV800, manufactured by the ABB Company. The ABB central inverters

provide a high level of performance based on high efficiency, low auxiliary power

consumption, together with a verified reliability and an experienced worldwide

service organization. The inverters are ranging from 100 kW up to 1000 kW, being

optimized for multi-megawatt photovoltaic power plants. Since the inverters

implemented in the solar power plant where we have conducted the measurements

are commonly used, the method that we have developed can be adapted easily to

the cases of other solar power plants.

In the first attempts to develop the prediction solution, we have tested

various other software products that made use of stochastic methods. We applied

first-order and second-order autoregressive method (AR(1) and AR(2)), first-order

and second-order moving average (MA(1) and MA(2)), mixed model ARMA and

auto regressive integrated moving average (ARIMA).

The methods returned good results with acceptable errors, except the

results from the months of January, February and December, cases in which the

errors were high (Figure 1).

Figure 1. The error histograms obtained for the month of March

using stochastic methods

The best results were registered for AR(1), ARMA(1,1) and ARIMA

models, for both data sets: whole year and each month (Table 1).

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

88

Table 1. A comparison analysis of the results provided by the stochastic

 methods

Whole year MSE R March MSE R

AR(1) 0.096505 0.989558 AR(1) 0.098276 0.989385

AR(2) 0.113464 0.978219 AR(2) 0.117567 0.977347

MA(1) 0.194253 0.948153 MA(1) 0.218928 0.948439

MA(2) 0.202734 0.923199 MA(2) 0.231024 0.916695

ARMA(1,1) 0.096478 0.989582 ARMA(1,1) 0.098237 0.989438

ARMA(2,2) 0.113297 0.978492 ARMA(2,2) 0.117486 0.977452

ARIMA(1,1,1) 0.096372 0.989939 ARIMA(1,1,1) 0.098257 0.989453

ARIMA(2,1,2) 0.096435 0.989787 ARIMA(2,1,2) 0.098294 0.989398

Although these methods provided satisfactory results, they had as a main

drawback the fact that they did not allow the setting of more output parameters, but

only one.

3. Developing a series of neural networks for predicting Solar Power

Plant energy output in Romania

We have obtained the best results when developing our prediction solution

through neural networks. First, we developed three neural networks for the annual

data, one for each of the used algorithms: Levenberg-Marquardt (LM), Bayesian

Regularization (BR) and Scaled Conjugate Gradient (SCG). In this case, we have

obtained acceptable prediction results.

Taking into account the seasonal meteorological conditions, we improve

the prediction accuracy by developing the neural networks for each month of the

year, corresponding to each of the proposed algorithms. Thus, we have developed,

trained and tested 39 neural networks for prediction and we have validated 26 of

them (as for the networks trained using the Bayesian Regularization algorithm this

step does not occur). We have noticed that through this method we have obtained

improved prediction results than when using a single global network for the entire

year.

After a series of tests, we have decided to develop the networks according

to the following architecture that has proven to offer the best performance

regarding the prediction accuracy: 5 neurons for the Input data, 10 in the Hidden

layer, 2 in the Output layer and 2 for the Output data (Figure 2).

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

89

Figure 2. The Architecture of the Neural Networks

In order to train, validate and test the neural networks developed using the

LM and the SCG algorithms, we have divided the data set in the following way:

70% of it for the training process, 15% for the validation process and the remaining

15% for the testing process. In order to train and test the neural networks

developed using the BR algorithm, we have divided the data set in the following

way: 70% of it for the training process, 15% for the testing process and the

remaining 15% was not allocated (in order to obtain a relevant comparison of the

final results achieved by the three algorithms). In all the cases, the samples have

been randomly chosen as to cover the specified percentages. In order to train the

neural networks, we have used the mean square error (MSE) as an objective

function. When training a network with this function, if there are multiple outputs

having different ranges of values, the accuracy is optimized for the output element

that has a wider range of values and is less optimized relative to the output element

with a smaller range of values. Thus, the network will learn to fit the first output

element very well, while the second output element is not fit as accurate as the

first. In order to solve this issue, we have normalized the errors, by setting the

normalization performance parameter to its 'standard' value. By using this method,

the errors have been computed as if both of the output elements had values ranging

from -1 to 1 and consequently, the two output elements have been fitted very well

(Figure 3).

Figure 3. The source code for developing one of the Neural networks and

computing its performance parameters

In the following, we present some experimental results that we have

obtained, along with the consequent performance analysis of the neural networks.

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

90

3.1. Using Levenberg-Marquardt Algorithm

The Levenberg–Marquardt Algorithm (LM) is an artificial neural network

(ANN) training algorithm, used in mathematics and computing. It is also known as

the Damped Least-Squares (DLS) method and is useful in solving non-linear least

squares problems. The LM algorithm is a curve fitting algorithm, whose purpose is

to build a mathematical function or curve that matches a set of data that can be

subjected to some constraints. LM is used in a wide range of applications related to

curve-fitting problems, but like other fitting algorithms, it provides a local

minimum and not a global one [16].

In the case of the curve-fitting problems, the least squares method consists

in minimizing the sum of squared errors related to a parameterized function that

attempts to match a set of data. If the function does not depend linearly on the

parameters, one obtains the nonlinear least squares problems. In the nonlinear case,

the method consists in the iterative improving of the parameters, in order to

minimize the sum of squared errors. The Levenberg-Marquardt method is actually

a combination of two minimization methods: the gradient descent method and the

Gauss-Newton method [17].

Each of these methods is characterized by the manner in which the sum of

the squared errors is reduced. In the gradient descent method, the reduction is

achieved by updating the parameters as to obtain the greatest reduction of the least

squares objective function. In the Gauss-Newton method, the reduction is achieved

by assuming that the least squares function is locally quadratic and afterwards the

minimum of the quadratic is computed. The Levenberg-Marquardt method

combines the previous methods as follows: when the parameters are far from their

optimal value, the LM algorithm behaves like a gradient-descent method; when the

parameters are close to their optimal value, the LM algorithm behaves like the

Gauss-Newton method [8].

The nonlinear least squares minimization problems' purpose is to minimize

a function 𝑓 of the form:

𝑓(𝑥) =
1

2
‖𝑟(𝑥)‖2 (1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is an n-dimensional real array, 𝑟(𝑥) =
 (𝑟1(𝑥), 𝑟2(𝑥), … , 𝑟𝑚(𝑥)) is an array whose components are functions, defined on

ℝ𝑛 and having real values, while 𝑚 ≥ 𝑛. The 𝑟𝑘 functions are called residuals and

the function 𝑓 could also be written as:

𝑓(𝑥) =
1

2
[𝑟1

2 + 𝑟2
2 + ⋯ + 𝑟𝑚

2] =
1

2
∑ 𝑟𝑘

2𝑚
𝑘=1 (2)

We denote by 𝐽 the Jacobian matrix of 𝑟:

𝐽(𝑥) =
𝜕𝑟𝑘

𝜕𝑥𝑖
, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛 (3)

In the linear case, the 𝑟𝑘 functions are linear for each 1 ≤ 𝑘 ≤ 𝑚 and

therefore each of these functions could be written in the following form:

𝑟𝑘 =
𝜕𝑟𝑘

𝜕𝑥1
𝑥1 +

𝜕𝑟𝑘

𝜕𝑥2
𝑥2 + ⋯ +

𝜕𝑟𝑘

𝜕𝑥𝑛
𝑥𝑛 + 𝑟𝑘(0), 1 ≤ 𝑘 ≤ 𝑚 (4)

while the function 𝑓 takes the form:

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

91

𝑓(𝑥) =
1

2
‖𝐽𝑥 + 𝑟(0)‖2 (5)

and

∇𝑓(𝑥) = 𝐽𝑇(𝐽𝑥 + 𝑟), ∇2𝑓(𝑥) = 𝐽𝑇𝐽 (6)

The necessary condition for the function 𝑓(𝑥) to have a local minimum at

a point 𝑥𝑚𝑖𝑛 is that ∇𝑓(𝑥) = 0. From this condition we obtain

 𝑥𝑚𝑖𝑛 = −(𝐽𝑇𝐽)−1𝐽𝑇𝑟 (7)

In the non-linear case,

∇𝑓(𝑥) = ∑ 𝑟𝑘
𝑚
𝑘=1 (𝑥)∇𝑟𝑘(𝑥) = 𝐽(𝑥)𝑇𝑟(𝑥) (8)

and

∇2𝑓(𝑥) = 𝐽(𝑥)𝑇𝐽(𝑥) + ∑ 𝑟𝑘
𝑚
𝑘=1 (𝑥)∇2𝑟𝑘(𝑥) (9)

If the Jacobian matrix 𝐽 is known and either 𝑟𝑘 could be approximated by

linear functions, or the residuals 𝑟𝑘 are very small, then the Hessian ∇2𝑓(𝑥) could

be written in the same form as in the linear case:

∇2𝑓(𝑥) = 𝐽𝑇𝐽 (10)

If 𝑟𝑘 are being approximated by linear functions then ∇2𝑟𝑘(𝑥) are small.

As the assumption that the residuals are small was also used, it is important to

remark that when dealing with large residual problems, the above mentioned

quadratic approximation and the formula (10) are inappropriate and therefore the

performance of some algorithms becomes poor.

The gradient-descent method is an intuitive technique for obtaining the

minimum of a function. Thus, the minimum is obtained through an iteration in

which, at each step, the gradient of the function, multiplied by a negative parameter

is added:

𝑥𝑖+1 = 𝑥𝑖 − 𝜇∇𝑓 (11)

Taking into account that the method faces numerous convergence

problems [8], different approaches can be used in order to improve its convergence.

For example, the Newton's method proposes to solve the equation ∇𝑓(𝑥) = 0,

using the Taylor's formula for expanding the gradient in series around a certain

state 𝑥0, considered to be the current state:

∇𝑓(𝑥) = ∇𝑓(𝑥0) + (𝑥 − 𝑥0)𝑇∇2𝑓(𝑥0) + terms of higher order (12)

If 𝑓 is considered to be quadratic around 𝑥0, the terms of higher order are

negligible. Considering the necessary condition for a local minimum ∇𝑓(𝑥) = 0,

replacing 𝑥0 by 𝑥𝑖 and 𝑥 by 𝑥𝑖+1, one obtains an improved version of the equation

(11):

𝑥𝑖+1 = 𝑥𝑖 − (∇2𝑓(𝑥𝑖))−1∇𝑓(𝑥𝑖) (13)

As we have mentioned before, the Newton's method is based on the

quadratic approximation of 𝑓 and therefore, the Hessian matrix's exact computation

can be avoided, being replaced by the approximation (10). The above depicted

method has certain advantages regarding its rapid convergence, but it also has

some disadvantages regarding the linearity around the starting location.

Taking into account the advantages and disadvantages of the gradient-

descent method and of the Gauss-Newton iteration depicted above, Levenberg

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

92

proposed a new method, with an update rule that was built as a blend of the two

algorithms:

𝑥𝑖+1 = 𝑥𝑖 − (𝐻 + 𝜇𝐼)−1∇𝑓(𝑥𝑖) (14)

 where H = ∇2𝑓(𝑥𝑖) is the hessian matrix computed in 𝑥𝑖.

The update rule (14) is used taking into account the error. If, after an

update, the error lowers, this means that the quadratic assumption is proper and in

the next step, the parameter 𝜇 is adjusted by reducing it 10 times in order to reduce

the influence of the gradient descent. Otherwise, if the error increases, this means

that the influence of the gradient should increase, so the parameter 𝜇 is adjusted by

increasing it 10 times [8].

As mentioned before, in the non-linear case, the Hessian matrix can be

approximated as in the linear case (10), while the gradient is computed through (8).

The 𝑟(𝑥) vector contains the network errors and the Jacobian matrix contains the

derivatives of the network errors. Within the Levenberg–Marquardt algorithm, the

Jacobian matrix is computed using a back-propagation technique, thus avoiding the

computation of the Hessian matrix. The Newton update method (14) can also be

written as:

𝑥𝑖+1 = 𝑥𝑖 − (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑇(𝑥𝑖)𝑟(𝑥𝑖) (15)

where 𝐻 = 𝐽𝑇𝐽 is the hessian matrix computed in 𝑥𝑖 and ∇𝑓(𝑥𝑖) = 𝐽𝑇(𝑥𝑖)𝑟(𝑥𝑖).

Through the values of the parameter 𝜇, one can adjust the method. Thus,

𝜇 = 0 corresponds to the Newton's method, while large values of 𝜇 correspond to

the gradient descent method with a small step. By lowering or increasing the values

of the parameter 𝜇, the objective function is reduced at each step of the algorithm.

Thus, the Levenberg–Marquardt Algorithm combines the performance of the

gradient-descent method with the Gauss-Newton iteration, being more powerful

than both of these methods.

Taking into account the undeniable advantages of the Levenberg–

Marquardt Algorithm, we have decided to implement it in our research, by

developing, training, validating and testing a neural network for each month of the

year.

For the month of March, we have first analysed the validation performance

and the forecasting accuracy, using the NetMarchLM Network, developed, trained,

validated and tested using the Levenberg-Marquardt algorithm. We have obtained

the best validation performance at the 90th epoch, having the MSE value of

0.061763. The solution is net superior to the one when a single neural network is

trained for the whole year, using the LM algorithm (NetGlobalLM) that has the

best performance of 0.20196 for the MSE, obtained at the 109th epoch. Thus, the

solution for the month of March brings an improvement of 69% when compared to

the global one. The graphic confirms a high degree of performance and accuracy,

as the validation, the training and the test functions are very similar for the LM

algorithm. A very important issue that we have taken into consideration when

analysing the results was to study the test curve and compare it to the validation

one. We have analysed the test curve and verified if it had increased significantly

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

93

before the validation curve did, case in which the overfitting process might have

occurred. In the analysed case, we have noticed that this phenomenon did not

occur, which reflects the fact that we have divided appropriately the data sets and

conducted efficiently the network training. Afterwards, we have represented the

error histogram, when considering the forecasting for the month of March, using

the NetMarchLM Network, developed, trained, validated and tested using the

Levenberg-Marquardt algorithm (Figure 4).

Figure 4. The error histogram when considering the forecasting for the month

of March, using the NetMarchLM Network

We have noticed that while most of the errors fall between -308.6 and

385.3, there are a few training points with errors that fall outside this range, even if

by using the above-depicted methods we have minimized the number of the

outliers. When using a single neural network for the entire year, in the case of the

LM algorithm, we have observed that in this case most of the errors fall between -

3506 and 3983, but there also remain many training points with errors that fall

outside this range. The range of errors for the entire year is much wider than the

one for the month of March. The error histogram when considering the forecasting

for the month of March, using the NetMarchLM Network developed, trained,

validated and tested using the Levenberg-Marquardt algorithm, confirms the fact

that the results are very good, taking into account that the forecasting must be

performed for two output parameters that have different orders of magnitude, as

follows: the total active power varies between -40.63 and 7466.74 kW and the total

active energy export varies between 9300 and 18300 MWh. The obtained results

are very good and confirm the usefulness and efficiency of the normalization

process, that we have previously described. Afterwards, in order to validate the

network, we have computed and represented the regressions between the network

targets and network outputs, when considering the forecasting for the month of

March, using the NetMarchLM Network, developed, trained, validated and tested

using the Levenberg-Marquardt algorithm (Figure 5).

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

94

Figure 5. The regressions between the network targets and network outputs

when considering the forecasting for the month of March

The values of the correlation coefficient 𝑅 that we have obtained reflect a

very good fit, all of them being greater than 0.998. When we have developed,

trained, validated and tested a neural network for the entire year, using the

NetGlobalLM Network, we have obtained lower values for the correlation

coefficient 𝑅, even if all the values are greater than 0.957. Even if the results were

also good in the yearly approach, the difference between the monthly results

(highlighted through the month of March) and the yearly ones reflects the

difference between a very good fit and a good fit of the prediction results.

3.2. Using Regularization Algorithm

The Bayesian Regularization (BR) Algorithm targets the minimization of a

function that contains a linear combination of squared weights and squared errors.

The BR algorithm modifies this linear combination in such a way that when the

network training ends, the obtained network has improved generalization qualities

[9], [10]. The Bayesian Regularization is based on the Levenberg-Marquardt

algorithm and also on the backward propagation of errors (back-propagation) that

is used to compute the Jacobian 𝐽 of the objective function with respect to the

variables (weights and biases). Each variable is being adjusted according to the

Levenberg-Marquardt algorithm and an adaptive value is used, being increased

until a reduced value of the objective function is obtained. In that moment, the

changes are applied to the network and the adaptive value is decreased.

The BR algorithm developed by David MacKay allows estimating the total

number of parameters used by the model and thus, the number of network weights

used for solving a certain problem. The BR algorithm introduces two Bayesian

hyperparameters (𝛼 and 𝛽) whose purpose is to tell whether the learning process

must seek in the direction of the minimal errors or in that of the minimal weights.

Thus, the cost function can be written as:

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

95

𝐶(𝑖) = 𝛼 ∙ 𝑆𝑤 + 𝛽 ∙ 𝑆𝑒 (16)

where 𝑆𝑤 is the sum of all the squared weights and 𝑆𝑒 is the sum of all the squared

errors.

 One of the main advantages of the Bayesian Regularization algorithm is

that it avoids certain costs related to the validation procedures. For some problems,

it is not possible to reserve a portion of data in order to achieve the validation.

Through the Bayesian Regularization algorithm, these situations are avoided.

Another advantage of this algorithm consists in the fact that one can reduce or even

eliminate the need for testing various numbers of hidden neurons. By implementing

a third variable, γ, one is able to control the influence of the weights that are used

by the network and thus, it is possible to obtain information regarding the

complexity of the network.

In many cases, the Bayesian Regularization implementations update the

hyperparameters after each of the training cycles. However, in many cases, these

updates produce weak iterations. Therefore, various methods to update the

parameters have been developed, based on computing the inverse Hessian matrix.

Briefly, the Bayesian Regularization algorithm starts from computing the

Jacobian 𝐽 (by finite differences or using the chain rule) and then, the error

gradient:

𝑔 = 𝛻𝑓(𝑥) = 𝐽𝑇𝐸 (17)

In the next step, the Hessian matrix is approximated as

 H =𝐽𝑇𝐽 (18)

The cost function is computed through the formula (16), then the equation

 (𝐻 + 𝜆𝐼)𝛿 = 𝑔 (19)

is solved in order to find 𝛿. The values of 𝛿 are used in order to update the

network's weights 𝑤 and then, using the updated weights, the cost function is

computed again. If the cost function has not decreased, the updated weights are

discarded and 𝜆 is multiplied with an increasing factor 𝑣. If the cost function has

decreased, 𝜆 is divided with a decreasing factor 𝑣. In the next step, the Bayesian

hyperparameters 𝛼 and 𝛽 are updated, using one of the different existing

approaches [8].

Throughout the time, the Bayesian Regularization algorithm has proved to

be an extremely fast method for neural network learning when compared to other

algorithms (like the standard back-propagation algorithm).

This is the reason why we have decided to research the possibility of

developing, training and testing neural networks that implement it and analyse how

well this networks can be used in forecasting critical parameters regarding the

production of the solar renewable energy.

Afterwards, we have analysed the training performance when considering

the forecasting for the month of March, using the NetMarchBR Network,

developed, trained and tested using the Bayesian Regularization algorithm (Fig. 6).

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

96

Figure 6. The training performance when considering the forecasting for the

month of March, using the NetMarchBR Network

The best training performance that we have obtained was at the 282th

epoch, when the MSE had the value of 0.05707. This solution is net superior to the

one obtained by training a single neural network for the whole year, using the BR

algorithm (NetGlobalBR) when the best performance was obtained at the 229th

epoch and was 𝑀𝑆𝐸 = 0.19806. As a consequence, the solution for the month of

March brings an improvement of 71% when compared to the global one. The

graphic confirms a high degree of performance and accuracy, as the training and

the test functions are very similar for the BR algorithm. The overfitting process

does not occur, as the test curves do not increase significantly before the training

curves do.

Afterwards, we have represented the error histogram, when considering the

forecasting for the month of March, using the NetMarchBR Network, developed,

trained and tested using the Bayesian Regularization algorithm. Throughout the

histogram, the red bars represent testing data and the blue bars represent training

data. Thus, we have obtained information regarding the outliers. In the Bayesian

Regularization case, there are a few training points with errors that fall outside the

range -396.9 and 291 where most of the errors fall, even if we have reduced as

much as possible the number of the outliers using the above-depicted methods. In

the case of the BR algorithm, when training a single neural network for the entire

year, we have noticed that most of the errors fall between -3440 and 3698, but

there also remain many training points with errors ranging outside this interval.

The error histogram in this case, reflects very good results, in view of the

fact that the forecasting has to be performed for two output parameters with

different orders of magnitude: the total active power varies between - 40.63 and

7466.74 kW and the total active energy export varies between 9300 and 18300

MWh. The values of the correlation coefficient 𝑅 are all greater than 0.998

reflecting a very good fit. The correlation coefficients 𝑅 that we have obtained

when we have developed, trained and tested a neural network for the entire year,

using the NetGlobalBR Network, are all greater than 0.956. The results reflected a

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

97

good fit of the prediction in the yearly approach and a very good fit in the case of

the monthly approach (reflected through the month of March).

3.3. Using Scaled Conjugate Gradient algorithm

In 1993, Martin Moller introduced a supervised learning algorithm entitled

the Scaled Conjugate Gradient (SCG), useful for developing and training neural

networks. The SCG algorithm is based on the conjugate gradient methods [11]. The

algorithm has certain indisputable advantages when compared to previous

algorithms belonging to the same class, as the Rumelhart's standard back-

propagation algorithm [12], the Johansson's conjugate gradient algorithm with line

search [13] or the Battiti's one-step quasi-Newton algorithm [14].

The SCG algorithm is fully-automated, preventing the usage of user-

dependent parameters that can become critical and also has the advantage of

avoiding some of the time-consuming procedures used by the previous algorithms

when determining the step size (the length of the weight update). In this stage,

other algorithms require a line search for each iteration, which is a resource

consuming process as for each search the network's response must be computed

several times. The SCG algorithm avoids this line search by combining the

conjugate gradient approach and the Levenberg-Marquardt's approach of model-

trust region. As in the case of many other conjugate gradient methods, the SCG is

based on the conjugate directions, but taking into account its performance and

especially the fact that it does not perform a line search at each iteration, the

Moller's implementation is faster than other conjugate gradient methods.

The backward propagation of errors or the back-propagation, represents a

useful method for training artificial neural networks [15]. It is used in conjunction

with optimization methods, for example with the gradient descent. By using this

method, the gradient of the objective function with respect to the weights of the

network is computed. The purpose is to minimize the objective function. The

backward propagation of errors method requires a set of input values and their

corresponding outputs, based on which the gradient of the objective function is

computed. The weights of the network are adjusted in the direction that makes the

objective function decrease most rapidly (the steepest descent directions) and this

happens along the negative of the gradient. However, even if in this case the

objective function decreases faster, this is not the fastest possible convergence. The

conjugate gradient algorithms perform the search along the conjugate gradient

directions of the previous steps, minimizing the objective function along these

directions and improving the convergence of the general back-propagation method.

In this way, a minimization performed in a certain step is not undone in the

following one, as it happens in other cases.

Being second order techniques, the conjugate gradient methods aim to

minimize functions of several variables by using their second derivatives, in

contrast with the back-propagation methods that are first-order techniques and

make use of the first derivatives of the objective functions. The methods of

obtaining the local minimum of the objective functions, based on the second

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

98

derivatives, impose increased computational costs but they do have certain

advantages over the first order methods.

The Scaled Conjugate Gradient trains any network, with the condition that

the involved elements (associated weight, net input, transfer functions) are

derivable functions. As in the case of all the conjugate gradient methods, for the

SCG the first iteration searches in the steepest descent direction 𝑝0 = −𝑔0 [8], but

then a line search is performed in order to determine the optimal distance that is

required for moving along the current search direction:

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑔𝑖 (20)

The second search direction is conjugated to the previous one. Generally,

for each step, the searching direction is obtained by combining the previous

direction used for searching with the new steepest descent direction:

𝑝𝑖 = −𝑔𝑖 + 𝛽𝑖𝑔𝑖−1 (21)

The way in which the 𝛽𝑖 parameters are computed is different from one version of

the conjugate gradient algorithm to another.

In our case, we have analysed the validation performance when

considering the forecasting for the month of March, using the NetMarchSCG

Network, developed, trained, validated and tested using the Scaled Conjugate

Gradient algorithm. The best validation performance was obtained when the 𝑀𝑆𝐸

was 0.11745 and we have obtained it at the 96th epoch. The solution of using a

neural network for the month of March is net superior to the solution that trains a

single neural network for the data set belonging to the whole year, using the SCG

algorithm (NetGlobalSCG) that has the best performance of 0.23566 for the MSE,

obtained at the 144th epoch. Thus, the solution for the month of March brings an

improvement of 50% when compared to the global one. In this case, as in the

previous ones, the over fitting process does not occur.

Analyzing the histogram, most of the errors fall between -275.5 and 402.4,

but even if we have minimized the number of the outliers using the above-depicted

methods, there are a few training points with errors that fall outside this range. We

have observed that when using a single neural network for the entire year, in the

case of the SCG algorithm, most of the errors fall between -4610 and 5083, but

many training points having errors that fall outside this range also remain. The

range of errors in the case of training a single network for the entire year has a

much wider interval than the one obtained for the month of March.

In the case of the NetMarchSCG Network developed, trained, validated

and tested using the Scaled Conjugate Gradient algorithm for the month of March,

the error histogram highlights very good results, taking into account the different

orders of magnitude of the two output parameters: the total active power that varies

between - 40.63 and 7466.74 kW and the total active energy export that varies

between 9300 and 18300 MWh.

For the SCG algorithm, we have obtained a very good fit as the values of

the correlation coefficient 𝑅 are all greater than 0.997 (Figure 7).

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

99

Figure 7. The regressions between the network targets and network outputs

when considering the forecasting for the month of March, using the

NetMarchSCG

Analysing the results obtained when we have developed, trained, validated

and tested a neural network for the entire year, using the NetGlobalSCG Network,

we have noticed that we have obtained lower values for the correlation coefficient

𝑅, which are all greater than 0.949. The results were good in the yearly approach,

but were very good in the monthly one (as reflected by the month of March).

3.4. A comparison analysis of the results provided by ANN algorithms

We have obtained two solutions that forecast the total active energy export

and the total active power, when knowing the solar irradiation, the ambient

temperature, the humidity, the wind direction and the wind speed. We have

developed, trained, validated and tested several neural networks based on three

algorithms: the LM, the BR and the SCG. The first solution is based on developing

a single neural network for the entire year for each of the proposed algorithms, thus

obtaining 3 neural networks. The second solution is based on developing 12

different neural networks, one per month for each of the algorithms, thus resulting

in 36 neural networks. In the following we analyse the forecasting performance

provided by the 39 neural networks that we have developed (Table 2).

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

100

Table 2. A comparison analysis of the results provided by the 39 NN

The first column of this table contains the periods for which the input data

have been processed and the forecasted data have been obtained, through the

corresponding neural network of the 39 that we have developed. The second

column of the table contains the minimum of the mean squared error, computed for

each neural network, trained with a specific algorithm (LM, BR or SCG). The third

column contains the minimum values of the correlation coefficients R, for each

neural network, trained using a specific algorithm. The last column of the table

contains the intervals in which most of the errors fall, for each neural network, as

resulting from the error histograms. The obtained results, the comparison between

the monthly and yearly performance accuracy indicators, prove that the solution

that consists in training separate neural networks based on the input data

corresponding to each of the months is net superior to the solution of training a

single neural network based on the whole input data set. In addition to this,

comparing the obtained monthly results, we remark that the accuracy of the

obtained forecasting for all the months is excellent, the results being similar.

Comparing the accuracy of the forecasting results obtained for each of the

3 algorithms (LM, BR, SCG) we notice that in most of the situations, the neural

networks that make use of the Bayesian Regularization technique have the

capability of producing a better generalization than the ones using the early

stopping training method, implemented in the LM and SCG algorithms. In the

event of adding new input data in the future, in order to improve the training and

accuracy of the networks, the LM algorithm has the advantage of being faster than

the BR algorithm in training the networks, but has the drawback of consuming a

higher amount of memory. If, in the future, the training speed is a concern when

adding new inputs and the available system's memory becomes a limitation, then

the SCG algorithm proves to be a viable solution, being faster than both the LM

and BR algorithms, having reduced memory requirements but a slightly lower

degree of prediction accuracy.

After analysing the performance and the prediction accuracy for all the

ANN algorithms, we have used a few methods in order to improve the obtained

results. First, we have reinitialized each of the networks and its training. Each time

Prediction Intelligent System in the Field of Renewable Energies through Neural

Networks

101

when we have applied this procedure, the network parameters and the results have

changed. In some cases, we have obtained improved results by using this method.

We have also analysed another approach, adjusting the number of hidden

neurons. We have increased the number of neurons in the hidden layer gradually,

experimenting with different values. However, an increased number of hidden

neurons increase the number of parameters that optimized by the network and thus,

leads to an increased flexibility of the network. In our cases, this method did not

bring a significant increase in the prediction accuracy, a number of 10 neurons in

the hidden layer being sufficient for obtaining an optimum level of prediction.

Another improvement method that we have applied consists in using additional

training data, modifying the way in which we divided the samples up to the

moment when we have obtained the best results. Through this procedure, we have

obtained networks with better generalization capabilities, confirming the results

obtained in the first training steps.

4. Conclusions

Our proposed solution is of great help to the investors that need to assess

the potential of a certain area in producing green energy from solar power plants.

The costs of measuring the input data (solar irradiation, the ambient temperature,

the humidity, the wind direction and the wind speed) for a few months (or even for

years) are insignificant and fully justified for an investment of such a magnitude.

The forecasting results are of paramount importance for the green energy producers

in submitting the estimations of green energy production requested by the

Romanian National Energy Regulatory Authority (ANRE) and in developing

decision support systems for the efficient management of electricity generation

from renewable sources.

 ACKNOWLEDGEMENTS

This paper presents a series of results obtained within the SIPAMER

research project ("Sistem Inteligent pentru Predicţia, Analiza si Monitorizarea

Indicatorilor de Performanţă a Proceselor Tehnologice şi de Afaceri în

Domeniul Energiilor Regenerabile"), PNII – "Parteneriate în domeniile

prioritare", PCCA 2013, code 0996, no. 49/2014, financed by the National

Authority for Scientific Research (NASR).

REFERENCES

[1] Nassehzadeh, Sh.T., Behboodi, E., Aliyev, F.Q. (2012), Towards

Renewability by Applying Solar Energy Technologies For Improved Life Cycle;

International Journal on Technical and Physical Problems of Engineering (IJTPE),

Published by International Organization of IOTPE, Issue 11, Volume 4 Number 2

Pages 7-12, ISSN 2077-3528;

[2] Bara, A., Lungu, I., Oprea, S. V., Carutasu, G., Botezatu, C. P., Botezatu

C. (2014), Design Workflow for Cloud Service Information System for

Integration and Knowledge Management Based in Renewable Energy; Journal of

Information Systems & Operations Management, Universitară Publishing; vol.8,

no.2, ISSN 1843-4711;

Ion Lungu, Adela Bâra, George Cărutasu, Alexandru Pîrjan, Simona-Vasilica Oprea

102

[3] Bara, A., Oprea, S.V., Velicanu, A., Botha, I. (2013), Spatial Collaborative

System for Wind Power Plants Using Service Oriented Architecture; The 2013

International Conference of Computer Science and Engineering (ICCSE’13),

World Congress on Engineering, London, UK, published in Lecture Notes in

Engineering and Computer Science, pp 909-914, Newswood Limited International

Association of Engineers, ISSN: 2078-0958 (print);

[4] Luo, L. F., Hong, Y. (2012), Renewable Energy Systems: Advanced

Conversion Technologies and Applications; CRC Press, ISBN 9781439891094;

[5] Freris, L., Infield D. (2008), Renewable Energy in Power Systems; Wiley;

[6] Radulescu M., Banica L., Polychronidou P. (2015), Greek Banks

Profitability Developments in Romania and the Banking Strategy of the Greek

Banking Groups in the Eastern Europe: A Forecasting Approach; Economic

Computation and Economic Cybernetics Studies and Research, 49 (2), 189-210;

[7] Andrei, C.A., Oancea B., Nedelcu M., Sinescu R.D. (2015), Predicting

Cardiovascular Diseases Prevalence Using Neural Networks; Economic

Computation and Economic Cybernetics Studies and Research, 49 (3), 73-84;

[8] Kişi, Ö., Uncuoğlu, E. (2005), Comparison of Three Back-propagation

Training Algorithms for Two Case Studies; Indian Journal of Engineering &

Materials Sciences (IJEMS), 434–442;

[9] MacKay, D.J.C. (1992), Neural Computation; Vol. 4, No. 3, pp. 415–447;

[10] Foresee, D., Hagan, M. (1997), Gauss-Newton Approximation to Bayesian

Learning; Proceedings of the 1997 International Joint Conference on Neural
Networks, Publisher: Institute of Electrical and Electronics Engineers Inc.

[11] Moller, M. (1993), A Scaled Conjugate Gradient Algorithm for Fast

Supervised Learning; Neural Networks, Vol. 6, No. 4, pp. 525-533;

[12] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986), Learning Internal

Representations by Error Propagation, in D. E. Rumelhart, & J. L. McClelland

(Eds.), Parallel distributed processing. Exploration in the microstructure of

cognition (pp. 318-362), Cambridge, MA: MIT Press;

[13] Johansson, E. M., Dowla, E U., Goodman, D. M. (1991),

Backpropagation Learning for Multi-layer Feed-forward Neural Networks Using

the Conjugate Gradient Method; International Journal of Neural Systems, 2(4),

pp. 291-302;

[14] Battiti, R. (1990), Optimization Methods for Back-propagation: Automatic

Parameter Tuning and Faster Convergence; IJNNC-90-WASH.DC. 1, pp.593-

596;

[15] Rojas, R. (1996), The Back Propagation Algorithm of Neural Networks - A

Systematic Introduction; Springer-Verlag, Berlin, New-York, ISBN 978-

3540605058;

[16] Levenberg, K. (1944), A method for the solution of certain problems in least

squares, Quart. Appl. Math., Vol. 2, pp. 164–168;

[17] Marquardt, D. (1963), An Algorithm for Least-squares Estimation of

Nonlinear Parameters; SIAM J. Appl. Math., Vol. 11, pp. 431–441.

