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PREDICTION INTELLIGENT SYSTEM IN THE FIELD OF RENEWABLE 

ENERGIES THROUGH NEURAL NETWORKS 

 

 

Abstract: In this paper, we have developed a series of neural networks in 

order to design a decision support system for predicting, analysing and monitoring 

the performance indicators in the field of renewable energies in Romania. We have 

first analysed a series of comparative aspects regarding the algorithms used for 

developing the neural networks: the Levenberg-Marquardt, the Bayesian 

Regularization and the Scaled Conjugate Gradient algorithms. Then, we have 

developed, trained, validated and tested several neural networks based on the 

above-mentioned algorithms, using the Neural Network Toolbox from the 

development environment MatlabR2015a. Thus, we have obtained a solution that 

forecasts the total active energy export and the total active power, when knowing 

the solar irradiation, the ambient temperature, the humidity, the wind direction and 

the wind speed.  

Keywords: Neural Networks, algorithms, renewable energy, solar power 

plant, Decision Support System. 
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1. Introduction 

Nowadays, in many European countries including Romania, it is necessary 

to encourage the usage of renewable energy resources as they offer a wide range of 

advantages [1]. Thus, the security of energy supply and the conservation of the 

traditional resources are ensured while the imports of primary energy resources are 

reduced significantly. Moreover, the usage of renewable energy stimulates the 
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economic development at local, regional and global levels and creates new 

employment opportunities [2], [3]. A major advantage of using renewable energy is 

related to reducing the environmental pollution [4], [5]. 

Currently, at the national level, in the power plants that produce renewable 

energy, the renewable resource management is not sustained by a decision support 

system (DSS) that could enable the efficient monitoring and analysis of the energy 

produced from these sources. In many other European countries, there are decision 

support systems for the efficient management of electricity generation (e.g. 

Germany, Spain). Unfortunately, the developing costs of such systems are pretty 

high and their implementation in Romania must take into account the national 

specific.  

The development of a DSS poses to the developers certain issues and risks. 

These are related to the fact that data is coming from heterogeneous sources, or that 

the predictions and notifications might be inaccurate as, unfortunately, at the 

national and international level the existing methods or systems provide a 

prediction error higher than 30% for Wind Power Plants (WPP) and 15% for Solar 

Power Plants (SPP) [2], [3]. A DSS for the prediction, analysis and monitoring the 

technological and business processes in the field of renewable energy in Romania 

can be developed using different approaches. Due to their undeniable advantages, 

in this paper we have chosen to develop a series of Neural Networks.   

The Artificial Neural Networks (ANN) offer many advantages in the cases 

of statistical, stochastic and deterministic approaches. One of the most important 

advantages of the neural networks consists in the fact that the networks do not rely 

on a priori mathematical model, as in the case of other approaches; the results 

depend on the data and a model can be recognized without learning the definitions. 

They are used in numerous applications, that include models for 

approximation, optimization, systems modelling and pattern recognition systems. 

The artificial neural networks are frequently used for engineering, economical 

modelling [6] or medicine [7].  

We have first used stochastic methods, then we analysed a series of 

comparative aspects regarding the ANN algorithms: the Levenberg-Marquardt, the 

Bayesian Regularization and the Scaled Conjugate Gradient algorithms. We have 

developed, trained, validated and tested several neural networks based on the 

above-mentioned algorithms, using the Neural Network Toolbox from the 

development environment MatlabR2015a.  

 

2. Prediction models for Solar Power Plant using stochastic methods 

In order to develop the proposed solution, we have identified the input 

parameters (the solar irradiation, the ambient temperature, the humidity, the wind 

direction, the wind speed), along with the corresponding outputs (the total active 

energy export, the total active power). We have gathered the experimental data 

corresponding to the input and output parameters, resulting in a total number of 

50,631 samples, through measurements conducted over a one-year period (from the 
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1st of January to the 31st of December 2014), from 10 to 10 minutes, in a solar 

power plant located in the Giurgiu County, in Romania.  

The solar power plant where we have conducted the measurements 

comprises photovoltaic panels having two models of invertors: 600 kW and 760 

kW PSV800, manufactured by the ABB Company. The ABB central inverters 

provide a high level of performance based on high efficiency, low auxiliary power 

consumption, together with a verified reliability and an experienced worldwide 

service organization. The inverters are ranging from 100 kW up to 1000 kW, being 

optimized for multi-megawatt photovoltaic power plants. Since the inverters 

implemented in the solar power plant where we have conducted the measurements 

are commonly used, the method that we have developed can be adapted easily to 

the cases of other solar power plants. 

In the first attempts to develop the prediction solution, we have tested 

various other software products that made use of stochastic methods. We applied 

first-order and second-order autoregressive method (AR(1) and AR(2)), first-order 

and second-order moving average (MA(1) and MA(2)), mixed model ARMA and 

auto regressive integrated moving average (ARIMA).  

The methods returned good results with acceptable errors, except the 

results from the months of January, February and December, cases in which the 

errors were high (Figure 1).  

 

 
Figure 1. The error histograms obtained for the month of March  

using stochastic methods 

 

The best results were registered for AR(1), ARMA(1,1) and ARIMA 

models, for both data sets: whole year and each month (Table 1). 
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Table 1. A comparison analysis of the results provided by the stochastic  

               methods 

 

Whole year MSE R March MSE R 

AR(1) 0.096505 0.989558 AR(1) 0.098276 0.989385 

AR(2) 0.113464 0.978219 AR(2) 0.117567 0.977347 

MA(1) 0.194253 0.948153 MA(1) 0.218928 0.948439 

MA(2) 0.202734 0.923199 MA(2) 0.231024 0.916695 

ARMA(1,1) 0.096478  0.989582 ARMA(1,1) 0.098237 0.989438 

ARMA(2,2) 0.113297 0.978492 ARMA(2,2) 0.117486 0.977452 

ARIMA(1,1,1)  0.096372 0.989939 ARIMA(1,1,1)  0.098257 0.989453 

ARIMA(2,1,2)  0.096435 0.989787 ARIMA(2,1,2)  0.098294 0.989398 

 

Although these methods provided satisfactory results, they had as a main 

drawback the fact that they did not allow the setting of more output parameters, but 

only one. 

 

3. Developing a series of neural networks for predicting Solar Power 

Plant energy output  in Romania 

 

We have obtained the best results when developing our prediction solution 

through neural networks. First, we developed three neural networks for the annual 

data, one for each of the used algorithms: Levenberg-Marquardt (LM), Bayesian 

Regularization (BR) and Scaled Conjugate Gradient (SCG). In this case, we have 

obtained acceptable prediction results.  

Taking into account the seasonal meteorological conditions, we improve 

the prediction accuracy by developing the neural networks for each month of the 

year, corresponding to each of the proposed algorithms. Thus, we have developed, 

trained and tested 39 neural networks for prediction and we have validated 26 of 

them (as for the networks trained using the Bayesian Regularization algorithm this 

step does not occur). We have noticed that through this method we have obtained 

improved prediction results than when using a single global network for the entire 

year.  

After a series of tests, we have decided to develop the networks according 

to the following architecture that has proven to offer the best performance 

regarding the prediction accuracy: 5 neurons for the Input data, 10 in the Hidden 

layer, 2 in the Output layer and 2 for the Output data (Figure 2).  
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Figure 2. The Architecture of the Neural Networks 

 

In order to train, validate and test the neural networks developed using the 

LM and the SCG algorithms, we have divided the data set in the following way: 

70% of it for the training process, 15% for the validation process and the remaining 

15% for the testing process. In order to train and test the neural networks 

developed using the BR algorithm, we have divided the data set in the following 

way: 70% of it for the training process, 15% for the testing process and the 

remaining 15% was not allocated (in order to obtain a relevant comparison of the 

final results achieved by the three algorithms). In all the cases, the samples have 

been randomly chosen as to cover the specified percentages. In order to train the 

neural networks, we have used the mean square error (MSE) as an objective 

function. When training a network with this function, if there are multiple outputs 

having different ranges of values, the accuracy is optimized for the output element 

that has a wider range of values and is less optimized relative to the output element 

with a smaller range of values. Thus, the network will learn to fit the first output 

element very well, while the second output element is not fit as accurate as the 

first. In order to solve this issue, we have normalized the errors, by setting the 

normalization performance parameter to its 'standard' value. By using this method, 

the errors have been computed as if both of the output elements had values ranging 

from -1 to 1 and consequently, the two output elements have been fitted very well 

(Figure 3). 

 
Figure 3. The source code for developing one of the Neural networks and 

computing its performance parameters 

 

In the following, we present some experimental results that we have 

obtained, along with the consequent performance analysis of the neural networks. 
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3.1. Using Levenberg-Marquardt Algorithm 

The Levenberg–Marquardt Algorithm (LM) is an artificial neural network 

(ANN) training algorithm, used in mathematics and computing. It is also known as 

the Damped Least-Squares (DLS) method and is useful in solving non-linear least 

squares problems. The LM algorithm is a curve fitting algorithm, whose purpose is 

to build a mathematical function or curve that matches a set of data that can be 

subjected to some constraints. LM is used in a wide range of applications related to 

curve-fitting problems, but like other fitting algorithms, it provides a local 

minimum and not a global one [16]. 

In the case of the curve-fitting problems, the least squares method consists 

in minimizing the sum of squared errors related to a parameterized function that 

attempts to match a set of data. If the function does not depend linearly on the 

parameters, one obtains the nonlinear least squares problems. In the nonlinear case, 

the method consists in the iterative improving of the parameters, in order to 

minimize the sum of squared errors. The Levenberg-Marquardt method is actually 

a combination of two minimization methods: the gradient descent method and the 

Gauss-Newton method [17]. 

Each of these methods is characterized by the manner in which the sum of 

the squared errors is reduced. In the gradient descent method, the reduction is 

achieved by updating the parameters as to obtain the greatest reduction of the least 

squares objective function. In the Gauss-Newton method, the reduction is achieved 

by assuming that the least squares function is locally quadratic and afterwards the 

minimum of the quadratic is computed. The Levenberg-Marquardt method 

combines the previous methods as follows: when the parameters are far from their 

optimal value, the LM algorithm behaves like a gradient-descent method; when the 

parameters are close to their optimal value, the LM algorithm behaves like the 

Gauss-Newton method [8]. 

The nonlinear least squares minimization problems' purpose is to minimize 

a function 𝑓 of the form: 

𝑓(𝑥) =
1

2
‖𝑟(𝑥)‖2                                                (1) 

where 𝑥 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) is an n-dimensional real array, 𝑟(𝑥)  =
 (𝑟1(𝑥), 𝑟2(𝑥), … , 𝑟𝑚(𝑥)) is an array whose components are functions, defined on 

ℝ𝑛 and having real values, while 𝑚 ≥ 𝑛. The 𝑟𝑘 functions are called residuals and 

the function 𝑓 could also be written as: 

𝑓(𝑥) =
1

2
[𝑟1

2 + 𝑟2
2 + ⋯ + 𝑟𝑚

2 ] =
1

2
∑ 𝑟𝑘

2𝑚
𝑘=1                                (2) 

We denote by 𝐽  the Jacobian matrix of 𝑟: 

𝐽(𝑥) =
𝜕𝑟𝑘

𝜕𝑥𝑖
, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛                                         (3) 

In the linear case, the 𝑟𝑘 functions are linear for each 1 ≤ 𝑘 ≤ 𝑚  and 

therefore each of these functions could be written in the following form: 

𝑟𝑘 =
𝜕𝑟𝑘

𝜕𝑥1
𝑥1 +

𝜕𝑟𝑘

𝜕𝑥2
𝑥2 + ⋯ +

𝜕𝑟𝑘

𝜕𝑥𝑛
𝑥𝑛 + 𝑟𝑘(0), 1 ≤ 𝑘 ≤ 𝑚                 (4) 

while the function 𝑓 takes the form: 
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𝑓(𝑥) =
1

2
‖𝐽𝑥 + 𝑟(0)‖2                                                      (5) 

and 

∇𝑓(𝑥) = 𝐽𝑇(𝐽𝑥 + 𝑟), ∇2𝑓(𝑥) = 𝐽𝑇𝐽                                        (6) 

The necessary condition for the function 𝑓(𝑥) to have a local minimum at 

a point 𝑥𝑚𝑖𝑛 is that ∇𝑓(𝑥) = 0. From this condition we obtain 

 𝑥𝑚𝑖𝑛 = −(𝐽𝑇𝐽)−1𝐽𝑇𝑟                                                         (7) 

In the non-linear case, 

∇𝑓(𝑥) = ∑ 𝑟𝑘
𝑚
𝑘=1 (𝑥)∇𝑟𝑘(𝑥) = 𝐽(𝑥)𝑇𝑟(𝑥)                                    (8) 

and 

∇2𝑓(𝑥) = 𝐽(𝑥)𝑇𝐽(𝑥) + ∑ 𝑟𝑘
𝑚
𝑘=1 (𝑥)∇2𝑟𝑘(𝑥)                                   (9) 

If the Jacobian matrix 𝐽 is known and either 𝑟𝑘 could be approximated by 

linear functions, or the residuals 𝑟𝑘 are very small, then the Hessian ∇2𝑓(𝑥) could 

be written in the same form as in the linear case:  

∇2𝑓(𝑥) = 𝐽𝑇𝐽                                                             (10) 

If 𝑟𝑘 are being approximated by linear functions then ∇2𝑟𝑘(𝑥) are small. 

As the assumption that the residuals are small was also used, it is important to 

remark that when dealing with large residual problems, the above mentioned 

quadratic approximation and the formula (10) are inappropriate and therefore the 

performance of some algorithms becomes poor. 

The gradient-descent method is an intuitive technique for obtaining the 

minimum of a function. Thus, the minimum is obtained through an iteration in 

which, at each step, the gradient of the function, multiplied by a negative parameter 

is added: 

𝑥𝑖+1 = 𝑥𝑖 − 𝜇∇𝑓                                               (11) 

Taking into account that the method faces numerous convergence 

problems [8], different approaches can be used in order to improve its convergence. 

For example, the Newton's method proposes to solve the equation ∇𝑓(𝑥) = 0, 

using the Taylor's formula for expanding the gradient in series around a certain 

state 𝑥0, considered to be the current state: 

∇𝑓(𝑥) = ∇𝑓(𝑥0) + (𝑥 − 𝑥0)𝑇∇2𝑓(𝑥0) + terms of higher order          (12) 

If 𝑓 is considered to be quadratic around 𝑥0, the terms of higher order are 

negligible. Considering the necessary condition for a local minimum ∇𝑓(𝑥) = 0, 

replacing 𝑥0 by 𝑥𝑖 and 𝑥 by 𝑥𝑖+1, one obtains an improved version of the equation 

(11): 

𝑥𝑖+1 = 𝑥𝑖 − (∇2𝑓(𝑥𝑖))−1∇𝑓(𝑥𝑖)                                    (13) 

As we have mentioned before, the Newton's method is based on the 

quadratic approximation of 𝑓 and therefore, the Hessian matrix's exact computation 

can be avoided, being replaced by the approximation (10). The above depicted 

method has certain advantages regarding its rapid convergence, but it also has 

some disadvantages regarding the linearity around the starting location.  

Taking into account the advantages and disadvantages of the gradient-

descent method and of the Gauss-Newton iteration depicted above, Levenberg 
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proposed a new method, with an update rule that was built as a blend of the two 

algorithms: 

𝑥𝑖+1 = 𝑥𝑖 − (𝐻 + 𝜇𝐼)−1∇𝑓(𝑥𝑖)                                    (14)                               

 where H = ∇2𝑓(𝑥𝑖) is the hessian matrix computed in 𝑥𝑖.  

The update rule (14) is used taking into account the error. If, after an 

update, the error lowers, this means that the quadratic assumption is proper and in 

the next step, the parameter 𝜇 is adjusted by reducing it 10 times in order to reduce 

the influence of the gradient descent. Otherwise, if the error increases, this means 

that the influence of the gradient should increase, so the parameter 𝜇 is adjusted by 

increasing it 10 times [8]. 

As mentioned before, in the non-linear case, the Hessian matrix can be 

approximated as in the linear case (10), while the gradient is computed through (8). 

The 𝑟(𝑥) vector contains the network errors and the Jacobian matrix contains the 

derivatives of the network errors. Within the Levenberg–Marquardt algorithm, the 

Jacobian matrix is computed using a back-propagation technique, thus avoiding the 

computation of the Hessian matrix. The Newton update method (14) can also be 

written as:  

𝑥𝑖+1 = 𝑥𝑖 − (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑇(𝑥𝑖)𝑟(𝑥𝑖)                                 (15)                               

where 𝐻 = 𝐽𝑇𝐽 is the hessian matrix computed in 𝑥𝑖 and  ∇𝑓(𝑥𝑖) = 𝐽𝑇(𝑥𝑖)𝑟(𝑥𝑖). 

Through the values of the parameter 𝜇, one can adjust the method. Thus, 

𝜇 = 0 corresponds to the Newton's method, while large values of 𝜇 correspond to 

the gradient descent method with a small step. By lowering or increasing the values 

of the parameter 𝜇, the objective function is reduced at each step of the algorithm. 

Thus, the Levenberg–Marquardt Algorithm combines the performance of the 

gradient-descent method with the Gauss-Newton iteration, being more powerful 

than both of these methods.  

Taking into account the undeniable advantages of the Levenberg–

Marquardt Algorithm, we have decided to implement it in our research, by 

developing, training, validating and testing a neural network  for each month of the 

year.  

For the month of March, we have first analysed the validation performance 

and the forecasting accuracy, using the NetMarchLM Network, developed, trained, 

validated and tested using the Levenberg-Marquardt algorithm. We have obtained 

the best validation performance at the 90th epoch, having the MSE value of 

0.061763. The solution is net superior to the one when a single neural network is 

trained for the whole year, using the LM algorithm (NetGlobalLM) that has the 

best performance of 0.20196 for the MSE, obtained at the 109th epoch. Thus, the 

solution for the month of March brings an improvement of 69% when compared to 

the global one. The graphic confirms a high degree of performance and accuracy, 

as the validation, the training and the test functions are very similar for the LM 

algorithm. A very important issue that we have taken into consideration when 

analysing the results was to study the test curve and compare it to the validation 

one. We have analysed the test curve and verified if it had increased significantly 
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before the validation curve did, case in which the overfitting process might have 

occurred. In the analysed case, we have noticed that this phenomenon did not 

occur, which reflects the fact that we have divided appropriately the data sets and 

conducted efficiently the network training. Afterwards, we have represented the 

error histogram, when considering the forecasting for the month of March, using 

the NetMarchLM Network, developed, trained, validated and tested using the 

Levenberg-Marquardt algorithm (Figure 4).  

 
Figure 4. The error histogram when considering the forecasting for the month 

of March, using the NetMarchLM Network 

 

We have noticed that while most of the errors fall between -308.6 and 

385.3, there are a few training points with errors that fall outside this range, even if 

by using the above-depicted methods we have minimized the number of the 

outliers. When using a single neural network for the entire year, in the case of the 

LM algorithm, we have observed that in this case most of the errors fall between -

3506 and 3983, but there also remain many training points with errors that fall 

outside this range. The range of errors for the entire year is much wider than the 

one for the month of March. The error histogram when considering the forecasting 

for the month of March, using the NetMarchLM Network developed, trained, 

validated and tested using the Levenberg-Marquardt algorithm, confirms the fact 

that the results are very good, taking into account that the forecasting must be 

performed for two output parameters that have different orders of magnitude, as 

follows: the total active power varies between -40.63 and 7466.74 kW and the total 

active energy export varies between 9300 and 18300 MWh. The obtained results 

are very good and confirm the usefulness and efficiency of the normalization 

process, that we have previously described. Afterwards, in order to validate the 

network, we have computed and represented the regressions between the network 

targets and network outputs, when considering the forecasting for the month of 

March, using the NetMarchLM Network, developed, trained, validated and tested 

using the Levenberg-Marquardt algorithm (Figure 5). 
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Figure 5. The regressions between the network targets and network outputs 

when considering the forecasting for the month of March 

 

The values of the correlation coefficient 𝑅 that we have obtained reflect a 

very good fit, all of them being greater than 0.998. When we have developed, 

trained, validated and tested a neural network for the entire year, using the 

NetGlobalLM Network, we have obtained lower values for the correlation 

coefficient 𝑅, even if all the values are greater than 0.957. Even if the results were 

also good in the yearly approach, the difference between the monthly results 

(highlighted through the month of March) and the yearly ones reflects the 

difference between a very good fit and a good fit of the prediction results.  

 

3.2. Using Regularization Algorithm 

The Bayesian Regularization (BR) Algorithm targets the minimization of a 

function that contains a linear combination of squared weights and squared errors. 

The BR algorithm modifies this linear combination in such a way that when the 

network training ends, the obtained network has improved generalization qualities 

[9], [10]. The Bayesian Regularization is based on the Levenberg-Marquardt 

algorithm and also on the backward propagation of errors (back-propagation) that 

is used to compute the Jacobian 𝐽 of the objective function with respect to the 

variables (weights and biases). Each variable is being adjusted according to the 

Levenberg-Marquardt algorithm and an adaptive value is used, being increased 

until a reduced value of the objective function is obtained. In that moment, the 

changes are applied to the network and the adaptive value is decreased.  

The BR algorithm developed by David MacKay allows estimating the total 

number of parameters used by the model and thus, the number of network weights 

used for solving a certain problem. The BR algorithm introduces two Bayesian 

hyperparameters (𝛼 and 𝛽) whose purpose is to tell whether the learning process 

must seek in the direction of the minimal errors or in that of the minimal weights. 

Thus, the cost function can be written as: 
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𝐶(𝑖) = 𝛼 ∙ 𝑆𝑤 +  𝛽 ∙ 𝑆𝑒                                          (16) 

where 𝑆𝑤 is the sum of all the squared weights and 𝑆𝑒 is the sum of all the squared 

errors.  

 One of the main advantages of the Bayesian Regularization algorithm is 

that it avoids certain costs related to the validation procedures. For some problems, 

it is not possible to reserve a portion of data in order to achieve the validation. 

Through the Bayesian Regularization algorithm, these situations are avoided. 

Another advantage of this algorithm consists in the fact that one can reduce or even 

eliminate the need for testing various numbers of hidden neurons. By implementing 

a third variable, γ, one is able to control the influence of the weights that are used 

by the network and thus, it is possible to obtain information regarding the 

complexity of the network. 

In many cases, the Bayesian Regularization implementations update the 

hyperparameters after each of the training cycles. However, in many cases, these 

updates produce weak iterations. Therefore, various methods to update the 

parameters have been developed, based on computing the inverse Hessian matrix. 

Briefly, the Bayesian Regularization algorithm starts from computing the 

Jacobian 𝐽 (by finite differences or using the chain rule) and then, the error 

gradient: 

𝑔 =  𝛻𝑓(𝑥) = 𝐽𝑇𝐸                                                       (17)  

In the next step, the Hessian matrix is approximated as 

 H  =𝐽𝑇𝐽                                                             (18) 

The cost function is computed through the formula (16), then the equation 

 (𝐻 +  𝜆𝐼)𝛿 =  𝑔                                                    (19) 

is solved in order to find 𝛿. The values of 𝛿 are used in order to update the 

network's weights 𝑤 and then, using the updated weights, the cost function is 

computed again. If the cost function has not decreased, the updated weights are 

discarded and 𝜆 is multiplied with an increasing factor 𝑣. If the cost function has 

decreased, 𝜆 is divided with a decreasing factor 𝑣. In the next step, the Bayesian 

hyperparameters 𝛼 and 𝛽 are updated, using one of the different existing 

approaches [8].  

Throughout the time, the Bayesian Regularization algorithm has proved to 

be an extremely fast method for neural network learning when compared to other 

algorithms (like the standard back-propagation algorithm).  

This is the reason why we have decided to research the possibility of 

developing, training and testing neural networks that implement it and analyse how 

well this networks can be used in forecasting critical parameters regarding the 

production of the solar renewable energy.  

Afterwards, we have analysed the training performance when considering 

the forecasting for the month of March, using the NetMarchBR Network, 

developed, trained and tested using the Bayesian Regularization algorithm (Fig. 6).  
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Figure 6. The training performance when considering the forecasting for the 

month of March, using the NetMarchBR Network  

 

The best training performance that we have obtained was at the 282th 

epoch, when the MSE had the value of 0.05707. This solution is net superior to the 

one obtained by training a single neural network for the whole year, using the BR 

algorithm (NetGlobalBR) when the best performance was obtained at the 229th 

epoch and was 𝑀𝑆𝐸 = 0.19806. As a consequence, the solution for the month of 

March brings an improvement of 71% when compared to the global one. The 

graphic confirms a high degree of performance and accuracy, as the training and 

the test functions are very similar for the BR algorithm. The overfitting process 

does not occur, as the test curves do not increase significantly before the training 

curves do.  

Afterwards, we have represented the error histogram, when considering the 

forecasting for the month of March, using the NetMarchBR Network, developed, 

trained and tested using the Bayesian Regularization algorithm. Throughout the 

histogram, the red bars represent testing data and the blue bars represent training 

data. Thus, we have obtained information regarding the outliers. In the Bayesian 

Regularization case, there are a few training points with errors that fall outside the 

range -396.9 and 291 where most of the errors fall, even if we have reduced as 

much as possible the number of the outliers using the above-depicted methods. In 

the case of the BR algorithm, when training a single neural network for the entire 

year, we have noticed that most of the errors fall between -3440 and 3698, but 

there also remain many training points with errors ranging outside this interval.  

The error histogram in this case, reflects very good results, in view of the 

fact that the forecasting has to be performed for two output parameters with 

different orders of magnitude: the total active power varies between - 40.63 and 

7466.74 kW and the total active energy export varies between 9300 and 18300 

MWh. The values of the correlation coefficient 𝑅 are all greater than 0.998 

reflecting a very good fit. The correlation coefficients 𝑅 that we have obtained 

when we have developed, trained and tested a neural network for the entire year, 

using the NetGlobalBR Network, are all greater than 0.956. The results reflected a 
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good fit of the prediction in the yearly approach and a very good fit in the case of 

the monthly approach (reflected through the month of March). 

 

3.3. Using Scaled Conjugate Gradient algorithm 

In 1993, Martin Moller introduced a supervised learning algorithm entitled 

the Scaled Conjugate Gradient (SCG), useful for developing and training neural 

networks. The SCG algorithm is based on the conjugate gradient methods [11]. The 

algorithm has certain indisputable advantages when compared to previous 

algorithms belonging to the same class, as the Rumelhart's standard back-

propagation algorithm [12], the Johansson's conjugate gradient algorithm with line 

search [13] or the Battiti's one-step quasi-Newton algorithm [14].  

The SCG algorithm is fully-automated, preventing the usage of user-

dependent parameters that can become critical and also has the advantage of 

avoiding some of the time-consuming procedures used by the previous algorithms 

when determining the step size (the length of the weight update). In this stage, 

other algorithms require a line search for each iteration, which is a resource 

consuming process as for each search the network's response must be computed 

several times. The SCG algorithm avoids this line search by combining the 

conjugate gradient approach and the Levenberg-Marquardt's approach of model-

trust region. As in the case of many other conjugate gradient methods, the SCG is 

based on the conjugate directions, but taking into account its performance and 

especially the fact that it does not perform a line search at each iteration, the 

Moller's implementation is faster than other conjugate gradient methods.  

The backward propagation of errors or the back-propagation, represents a 

useful method for training artificial neural networks [15]. It is used in conjunction 

with optimization methods, for example with the gradient descent. By using this 

method, the gradient of the objective function with respect to the weights of the 

network is computed. The purpose is to minimize the objective function. The 

backward propagation of errors method requires a set of input values and their 

corresponding outputs, based on which the gradient of the objective function is 

computed. The weights of the network are adjusted in the direction that makes the 

objective function decrease most rapidly (the steepest descent directions) and this 

happens along the negative of the gradient. However, even if in this case the 

objective function decreases faster, this is not the fastest possible convergence. The 

conjugate gradient algorithms perform the search along the conjugate gradient 

directions of the previous steps, minimizing the objective function along these 

directions and improving the convergence of the general back-propagation method. 

In this way, a minimization performed in a certain step is not undone in the 

following one, as it happens in other cases.  

Being second order techniques, the conjugate gradient methods aim to 

minimize functions of several variables by using their second derivatives, in 

contrast with the back-propagation methods that are first-order techniques and 

make use of the first derivatives of the objective functions. The methods of 

obtaining the local minimum of the objective functions, based on the second 
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derivatives, impose increased computational costs but they do have certain 

advantages over the first order methods.  

The Scaled Conjugate Gradient trains any network, with the condition that 

the involved elements (associated weight, net input, transfer functions) are 

derivable functions. As in the case of all the conjugate gradient methods, for the 

SCG the first iteration searches in the steepest descent direction 𝑝0 = −𝑔0 [8], but 

then a line search is performed in order to determine the optimal distance that is 

required for moving along the current search direction: 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑔𝑖                                                (20) 

The second search direction is conjugated to the previous one. Generally, 

for each step, the searching direction is obtained by combining the previous 

direction used for searching with the new steepest descent direction:  

𝑝𝑖 = −𝑔𝑖 + 𝛽𝑖𝑔𝑖−1                                               (21) 

The way in which the 𝛽𝑖 parameters are computed is different from one version of 

the conjugate gradient algorithm to another.  

In our case, we have analysed the validation performance when 

considering the forecasting for the month of March, using the NetMarchSCG 

Network, developed, trained, validated and tested using the Scaled Conjugate 

Gradient algorithm. The best validation performance was obtained when the 𝑀𝑆𝐸 

was 0.11745 and we have obtained it at the 96th epoch. The solution of using a 

neural network for the month of March is net superior to the solution that trains a 

single neural network for the data set belonging to the whole year, using the SCG 

algorithm (NetGlobalSCG) that has the best performance of 0.23566 for the MSE, 

obtained at the 144th epoch. Thus, the solution for the month of March brings an 

improvement of 50% when compared to the global one. In this case, as in the 

previous ones, the over fitting process does not occur. 

Analyzing the histogram, most of the errors fall between -275.5 and 402.4, 

but even if we have minimized the number of the outliers using the above-depicted 

methods, there are a few training points with errors that fall outside this range. We 

have observed that when using a single neural network for the entire year, in the 

case of the SCG algorithm, most of the errors fall between -4610 and 5083, but 

many training points having errors that fall outside this range also remain. The 

range of errors in the case of training a single network for the entire year has a 

much wider interval than the one obtained for the month of March. 

In the case of the NetMarchSCG Network developed, trained, validated 

and tested using the Scaled Conjugate Gradient algorithm for the month of March, 

the error histogram highlights very good results, taking into account the different 

orders of magnitude of the two output parameters: the total active power that varies 

between - 40.63 and 7466.74 kW and the total active energy export that varies 

between 9300 and 18300 MWh. 

For the SCG algorithm, we have obtained a very good fit as the values of 

the correlation coefficient 𝑅 are all greater than 0.997 (Figure 7). 
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Figure 7. The regressions between the network targets and network outputs 

when considering the forecasting for the month of March, using the 

NetMarchSCG  

 

Analysing the results obtained when we have developed, trained, validated 

and tested a neural network for the entire year, using the NetGlobalSCG Network, 

we have noticed that we have obtained lower values for the correlation coefficient 

𝑅, which are all greater than 0.949. The results were good in the yearly approach, 

but were very good in the monthly one (as reflected by the month of March). 

 

3.4. A comparison analysis of the results provided by ANN algorithms 

 

We have obtained two solutions that forecast the total active energy export 

and the total active power, when knowing the solar irradiation, the ambient 

temperature, the humidity, the wind direction and the wind speed. We have 

developed, trained, validated and tested several neural networks based on three 

algorithms: the LM, the BR and the SCG. The first solution is based on developing 

a single neural network for the entire year for each of the proposed algorithms, thus 

obtaining 3 neural networks. The second solution is based on developing 12 

different neural networks, one per month for each of the algorithms, thus resulting 

in 36 neural networks. In the following we analyse the forecasting performance 

provided by the 39 neural networks that we have developed (Table 2). 
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Table 2. A comparison analysis of the results provided by the 39 NN

 
The first column of this table contains the periods for which the input data 

have been processed and the forecasted data have been obtained, through the 

corresponding neural network of the 39 that we have developed. The second 

column of the table contains the minimum of the mean squared error, computed for 

each neural network, trained with a specific algorithm (LM, BR or SCG). The third 

column contains the minimum values of the correlation coefficients R, for each 

neural network, trained using a specific algorithm. The last column of the table 

contains the intervals in which most of the errors fall, for each neural network, as 

resulting from the error histograms. The obtained results, the comparison between 

the monthly and yearly performance accuracy indicators, prove that the solution 

that consists in training separate neural networks based on the input data 

corresponding to each of the months is net superior to the solution of training a 

single neural network based on the whole input data set. In addition to this, 

comparing the obtained monthly results, we remark that the accuracy of the 

obtained forecasting for all the months is excellent, the results being similar.  

Comparing the accuracy of the forecasting results obtained for each of the 

3 algorithms (LM, BR, SCG) we notice that in most of the situations, the neural 

networks that make use of the Bayesian Regularization technique have the 

capability of producing a better generalization than the ones using the early 

stopping training method, implemented in the LM and SCG algorithms. In the 

event of adding new input data in the future, in order to improve the training and 

accuracy of the networks, the LM algorithm has the advantage of being faster than 

the BR algorithm in training the networks, but has the drawback of consuming a 

higher amount of memory. If, in the future, the training speed is a concern when 

adding new inputs and the available system's memory becomes a limitation, then 

the SCG algorithm proves to be a viable solution, being faster than both the LM 

and BR algorithms, having reduced memory requirements but a slightly lower 

degree of prediction accuracy.  

After analysing the performance and the prediction accuracy for all the 

ANN algorithms, we have used a few methods in order to improve the obtained 

results. First, we have reinitialized each of the networks and its training. Each time 
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when we have applied this procedure, the network parameters and the results have 

changed. In some cases, we have obtained improved results by using this method.  

We have also analysed another approach, adjusting the number of hidden 

neurons. We have increased the number of neurons in the hidden layer gradually, 

experimenting with different values. However, an increased number of hidden 

neurons increase the number of parameters that optimized by the network and thus, 

leads to an increased flexibility of the network. In our cases, this method did not 

bring a significant increase in the prediction accuracy, a number of 10 neurons in 

the hidden layer being sufficient for obtaining an optimum level of prediction. 

Another improvement method that we have applied consists in using additional 

training data, modifying the way in which we divided the samples up to the 

moment when we have obtained the best results. Through this procedure, we have 

obtained networks with better generalization capabilities, confirming the results 

obtained in the first training steps.  

4. Conclusions 

Our proposed solution is of great help to the investors that need to assess 

the potential of a certain area in producing green energy from solar power plants. 

The costs of measuring the input data (solar irradiation, the ambient temperature, 

the humidity, the wind direction and the wind speed) for a few months (or even for 

years) are insignificant and fully justified for an investment of such a magnitude. 

The forecasting results are of paramount importance for the green energy producers 

in submitting the estimations of green energy production requested by the 

Romanian National Energy Regulatory Authority (ANRE) and in developing 

decision support systems for the efficient management of electricity generation 

from renewable sources.  
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